4.4 Article

Large-scale flow patterns and their influence on the intensification rates of western North Pacific tropical storms

期刊

MONTHLY WEATHER REVIEW
卷 135, 期 3, 页码 1110-1127

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR3327.1

关键词

-

向作者/读者索取更多资源

NCEP-NCAR reanalysis data are used to identify large-scale environmental flow patterns around western North Pacific tropical storms with the goal of finding a signal for those most favorable for rapid intensification, based on the hypothesis that aspects of the horizontal flow influence tropical cyclone intensification at an early stage of development. Based on the finding that intensification rate is a strong function of initial intensity (Joint Typhoon Warning Center best track), very rapid, rapid, and slow 24-h intensification periods from a weak tropical storm stage (35 kt) are defined. By using composite analysis and scalar EOF analysis of the zonal wind around these subsets, a form of the lower-level (850 mb) combined monsoon confluence-shearline pattern is found to occur dominantly for the very rapid cases. Based on the strength of the signal, it may provide a new rapid intensification predictor for operational use. At 200 mb the importance of the location of the tropical storm under a region of flow splitting into the midlatitude westerlies to the north and the subequatorial trough to the south is identified as a common criterion for the onset of rapid intensification. Cases in which interactions with upper-level troughs occurred, prior to and during slow and rapid intensification, are studied and strong similarities to prior Atlantic studies are found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据