4.7 Article

Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury

期刊

PLANT BIOTECHNOLOGY JOURNAL
卷 5, 期 2, 页码 254-262

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1467-7652.2006.00236.x

关键词

merA; merB; Populus deltoides; phytoremediation; re-transformation; tissue culture

向作者/读者索取更多资源

Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees were engineered to express merA (mercuric ion reductase) and merB (organomercury lyase) transgenes in order to be used for the phytoremediation of mercury-contaminated soils. Earlier studies with Arabidopsis thaliana and Nicotiana tabacum showed that this gene combination resulted in more efficient detoxification of organomercurial compounds than did merB alone, but neither species is optimal for long-term field applications. Leaf discs from in vitro-grown merA, nptII (neomycin phosphotransferase) transgenic cottonwood plantlets were inoculated with Agrobacterium tumefaciens strain C58 carrying the merB and hygromycin resistance (hptII) genes. Polymerase chain reaction of shoots regenerated from the leaf discs under selection indicated an overall transformation frequency of 20%. Western blotting of leaves showed that MerA and MerB proteins were produced. In vitro-grown merA/merB plants were highly resistant to phenylmercuric acetate, and detoxified organic mercury compounds two to three times more rapidly than did controls, as shown by mercury volatilization assay. This indicates that these cottonwood trees are reasonable candidates for the remediation of organomercury-contaminated sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据