4.6 Article

Magnetocaloric study of spin relaxation in dipolar spin ice Dy2Ti2O7

期刊

PHYSICAL REVIEW B
卷 75, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.104425

关键词

-

向作者/读者索取更多资源

The magnetocaloric effect of polycrystalline samples of pure and Y-doped dipolar spin ice Dy2Ti2O7 was investigated at temperatures from nominally 0.3 to 6 K and in magnetic fields of up to 2 T. As well as being of intrinsic interest, it is proposed that the magnetocaloric effect may be used as an appropriate tool for the qualitative study of slow relaxation processes in the spin ice regime. In the high-temperature regime the temperature change on adiabatic demagnetization was found to be consistent with previously published entropy vs temperature curves. At low temperatures (T < 0.4 K) cooling by adiabatic demagnetization was followed by an irreversible rise in temperature that persisted after the removal of the applied field. The relaxation time derived from this temperature rise was found to increase rapidly down to 0.3 K. The data near 0.3 K indicated a transition into a metastable state with much slower relaxation, supporting recent neutron-scattering results. In addition, magnetic dilution of 50% concentration was found to significantly prolong the dynamical response in the mK temperature range, in contrast with results reported for higher temperatures at which the spin correlations are suppressed. These observations are discussed in terms of defects and loop correlations in the spin ice state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据