4.2 Article

Free fatty acids and insulin resistance

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MCO.0b013e328042ba90

关键词

acyl-CoA; ceramide; peroxisome; proliferator-activated receptor; serine/threonine kinase

向作者/读者索取更多资源

Purpose of review Dysregulation of free fatty acid metabolism is a key event responsible for insulin resistance and type 2 diabetes. According to the glucose-fatty acid cycle of Randle, preferential oxidation of free fatty acids over glucose plays a major role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. However, other mechanisms are now described to explain the molecular basis of insulin resistance., Recent findings Recent studies have suggested that local accumulation of fat metabolites such as ceramides, diacylglycerol or acyl-CoA, inside skeletal muscle and liver, may activate a serine kinase cascade leading to defects in insulin signalling and glucose transport. Inflammation and oxidative stress are also potent mechanisms which could lead to a state of insulin resistance. Finally, modulation of transcription by free fatty acids through their binding to peroxisome proliferator-activated receptors could also contribute to impaired glucose metabolism. Summary The increase in free fatty acid flux resulting from increased lipolysis secondary to adipose-tissue. insulin resistance induces or aggravates insulin resistance in liver and muscle through direct or indirect (from triglyceride deposits) generation of metabolites, altering the insulin signalling pathway. Alleviating the excess of free fatty acids is a target for the treatment of insulin resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据