4.5 Article

Tracheal stenosis: a flow dynamics study

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 102, 期 3, 页码 1178-1184

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01063.2006

关键词

pressure drop

向作者/读者索取更多资源

Patients referred for treatment of tracheal stenosis typically are asymptomatic until critical narrowing of the airway occurs, which then requires immediate intervention. To understand how tracheal stenosis affects local pressure drops and explore how a dramatic increase in pressure drop could possibly be detected at an early stage, a computational fluid dynamics (CFD) study was undertaken. We assessed flow patterns and pressure drops over tracheal stenoses artificially inserted into a realistic three-dimensional upper airway model derived from multislice computed tomography images obtained in healthy men. Solving the Navier-Stokes equations (with a Yang-shih k-epsilon turbulence model) for different degrees of tracheal constriction located approximately one tracheal diameter below the glottis, the simulated pressure drop over the stenosis (Delta P) was seen to dramatically increase only when well over 70% of the tracheal lumen was obliterated. At 30 l/min, Delta P increased from 7 Pa for a 50% stenosis to, respectively, 46 and 235 Pa for 80% and 90% stenosis. The pressure-flow relationship in the entire upper airway model (between mouth and end of trachea) in the flow range 0 - 60 l/min showed a power law relationship with best-fit flow exponent of 1.77 in the absence of stenosis. The exponent became 1.92 and 2.00 in the case of 60% and 85% constriction, respectively. The present simulations confirm that the overall pressure drop at rest is only affected in case of severe constriction, and the simulated flow dependence of pressure drop suggests a means of detecting stenosis at a precritical stage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据