4.6 Article

Mapping of strongly correlated steady-state nonequilibrium system to an effective equilibrium

期刊

PHYSICAL REVIEW B
卷 75, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.125122

关键词

-

向作者/读者索取更多资源

By mapping steady-state nonequilibrium to an effective equilibrium, we formulate nonequilibrium problems within an equilibrium picture. The Hamiltonian in the open system is rewritten in terms of scattering states with appropriate boundary condition. We first study the analytic properties of many-body scattering states, impose the boundary-condition operator in a statistical operator and prove that this mapping is equivalent to the linear-response theory in the low-bias limit. In an example of infinite-U Anderson impurity model, we approximately solve the scattering state creation operators, based on which we derive the bias operator Y to construct the nonequilibrium ensemble in the form of the Boltzmann factor e(-beta(H-Y)). The resulting effective Hamiltonian is solved by noncrossing approximation. We obtain the I-V features of Kondo anomaly conductance at zero bias, inelastic transport via the charge excitation on the quantum dot, and significant inelastic current background over a wide range of bias.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据