4.5 Article

Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 78, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2712870

关键词

-

向作者/读者索取更多资源

Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据