4.2 Article

Global protein expression profiling of budding yeast in response to DNA damage

期刊

YEAST
卷 24, 期 3, 页码 145-154

出版社

WILEY
DOI: 10.1002/yea.1446

关键词

DNA damage response pathway; global protein expression profiling; yeast GFP expression library

向作者/读者索取更多资源

Exposure to DNA-damaging agents can activate cell cycle checkpoint and DNA repair processes to ensure genetic integrity. Such exposures also can affect the transcription of many genes required for these processes. In the budding yeast Saccharomyces cerevisiae, changes of global gene expression as a result of a DNA-damaging agent were previously identified by using DNA chip technology. DNA microarray analysis is a powerful tool for identifying genes whose expressions are changed in response to environmental changes. Transcriptional levels, however, do not necessarily reflect cellular protein levels. Green fluorescent protein (GFP) has been widely used as a reporter of gene expression and subcellular protein localization. We have used 4156 yeast strains expressing full-length, chromosome-tagged GFP fusion proteins to monitor changes of protein levels in response to the DNA-damaging agent, methyl methanesulphonate (MMS). Through flow cytometry, we identified 157 proteins whose levels were increased at least three-fold following treatment with MMS. Of 157 responsible genes, transcriptions of 57 were previously not known to be induced by MMS. Immunoblot experiments with tandem affinity-tagged yeast strains under the same experimental conditions confirmed these newly found proteins as inducible. These results suggest, therefore, that the 57 protein expressions are regulated by different mechanisms, such as post-translational modifications, and not by transcriptional regulation. Copyright (c) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据