4.6 Article

Early stages of radiation damage in graphite and carbon nanostructures: A first-principles molecular dynamics study

期刊

PHYSICAL REVIEW B
卷 75, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.115418

关键词

-

向作者/读者索取更多资源

Understanding radiation-induced defect formation in carbon materials is crucial for nuclear technology and for the manufacturing of nanostructures with desired properties. Using first-principles molecular dynamics, we perform a systematic study of the nonequilibrium processes of radiation damage in graphite. Our study reveals a rich variety of defect structures (vacancies, interstitials, intimate interstitial-vacancy pairs, and in-plane topological defects) with formation energies of 5-15 eV. We clarify the mechanisms underlying their creation and find unexpected preferences for particular structures. Possibilities of controlled defect-assisted engineering of nanostructures are analyzed. In particular, we conclude that the selective creation of two distinct low-energy intimate Frenkel pair defects can be achieved by using a 90-110 keV electron beam irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据