4.4 Article

Measurement of specific absorption rate and thermal simulation for arterial embolization hyperthermia in the Maghemite-Gelled model

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 43, 期 3, 页码 1078-1085

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2006.888737

关键词

arterial embolization hyperthermia; maghemite particles; mathematical modeling; specific power absorption

向作者/读者索取更多资源

Theoretical models are designed to be applied in hyperthermia treatment planning and to help optimize the surgical treatment procedures. However, it is difficult to obtain every physical parameter of the magnetic field in the living tissue in detail, which is necessary for the calculation. We therefore investigated the simulation of thermal distribution in arterial embolization hyperthermia (AEH) stimulated by the external ferrite-core applicator, and measured specific absorption rate (SAR) of magnetic nanoparticles in the maghemtite-gelled composite model. We used fiber optic temperature sensors (FOTS) to measure the values of SAR, which depend on the microstructure and sizes of particles and the intensity and frequency of external ac magnetic field. Detailed tests indicated that the attenuation of magnetic field was mainly focused on the vertical distance in the aperture of the apparatus. We built a simplified cylindrical phantom containing maghemite particles of 20 mn for thermal field simulation on the basis of SAR measurement. The results of simulation indicated that temperature elevation, induced by nanoparticles inside tumors under ac magnetic field, was dose-dependent. The temperature data acquired from the experiment were compatible with the theoretical results, which demonstrated that the current model considering the inhomogenous heat generation could provide accurate and reliable simulation results and a theoretical and technical basis for controlling temperature during AEH therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据