4.7 Article

Fibonacci-like photonic structure for femtosecond pulse compression

期刊

PHYSICAL REVIEW E
卷 75, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.036609

关键词

-

向作者/读者索取更多资源

The compression of femtosecond laser pulses by linear quasiperiodic and periodic photonic multilayer structures is studied both experimentally and theoretically. We compare the compression performance of a Fibonacci and a periodic structure with similar total thickness and the same number of layers, and find the performance to be higher in the Fibonacci case, as predicted by numerical simulation. This compression enhancement takes place due to the larger group velocity dispersion at a defect resonance of the transmission spectrum of the Fibonacci structure. We demonstrate that the Fibonacci structure with the thickness of only 2.8 mu m can compress a phase-modulated laser pulse by up to 30%. The possibility for compression of laser pulses with different characteristics in a single multilayer is explored. The operation of the compressor in the reflection regime has been modeled, and we show numerically that the reflected laser pulse is subjected to real compression: not only does its duration decrease but also its amplitude rises.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据