4.2 Article

A complete expression profile of matrix-degrading metalloproteinases in Dupuytren's disease

期刊

JOURNAL OF HAND SURGERY-AMERICAN VOLUME
卷 32A, 期 3, 页码 343-351

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.jhsa.2006.12.010

关键词

ADAMTS; Dupuytren's disease; gene expression; MMP; TIMP

向作者/读者索取更多资源

Purpose: Dupuytren's disease (DD) is a common fibrotic condition of the palmar fascia, leading to deposition of collagen-rich cords and finger contractions. The metzincin superfamily contains key enzymes in the turnover of collagen and other extracellular matrix macromolecules. A number of broad-spectrum matrix metalloproteinase inhibitors, used in cancer clinical trials, caused side effects of DD-like contractures. We tested the hypothesis that changes in the expression of specific metalloproteinases underlie or contribute to the fibrosis and contracture seen in DD. Methods: We collected tissue from patients with DD and used normal palmar fascia as a control. We profiled the expression of the entire matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinases (TIMP), and a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS) gene families in these tissues using real-time reverse-transcription polymerase chain reaction. Results: A number of metalloproteinases and inhibitors are regulated in DD. The expression of 3 key collagenases, MMP1, MMP13, and MMP14 is increased significantly in the DD nodule, as is the expression of the collagen biosynthetic enzyme ADAMTS14. The expression of MMP7, an enzyme with broad substrate specificity, is increased in the DID nodule and remains equally expressed in the DD cord. TIMP1 expression is increased significantly in DD nodule compared with normal palmar fascia. Conclusions: This study measured the expression of all MMP, ADAMTS, and TIMP genes in DD. Contraction and fibrosis may result from: (1) increased collagen biosynthesis mediated by increased ADAMTS-14; (2) an increased level of TIMP-1 blocking MMP-1- and MMP13-mediated collagenolysis; and (3) contraction enabled by MMP-14-mediated pericellular collagenolysis (and potentially MMP-7), which may escape inhibition by TIMP-1. The complete expression profile will provide a knowledge-based approach to novel therapeutics targeting these genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据