4.4 Article

Topological entanglement entropy from the holographic partition function

期刊

JOURNAL OF STATISTICAL PHYSICS
卷 126, 期 6, 页码 1111-1144

出版社

SPRINGER
DOI: 10.1007/s10955-006-9275-8

关键词

topological field theory; entanglement entropy; conformal field theory; fractional quantum hall effect

向作者/读者索取更多资源

We study the entropy of chiral 2+1-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We give a general expression for the holographic partition function, and discuss several examples in depth, including abelian and non-abelian fractional quantum Hall states, and p+ip superconductors. We extend these results to include a point contact allowing tunneling between two points on the edge, which causes thermodynamic entropy associated with the point contact to be lost with decreasing temperature. Such a perturbation effectively breaks the system in two, and we can identify the thermodynamic entropy loss with the loss of the edge entanglement entropy. From these results, we obtain a simple interpretation of the non-integer 'ground state degeneracy' which is obtained in 1+1-dimensional quantum impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据