4.7 Article

Nerve growth factor enhances voltage-gated Na+ channel activity and transwell migration in Mat-LyLu rat prostate cancer cell line

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 210, 期 3, 页码 602-608

出版社

WILEY-LISS
DOI: 10.1002/jcp.20846

关键词

-

资金

  1. MRC [G0501019] Funding Source: UKRI
  2. Medical Research Council [G0501019] Funding Source: researchfish
  3. Medical Research Council [G0501019] Funding Source: Medline

向作者/读者索取更多资源

The highly dynamic nature of voltage-gated Na+ channel (VGSC) expression and its controlling mechanism(s) are not well understood. In this study, we investigated the possible involvement of nerve growth factor (NGF) in regulating VGSC activity in the strongly metastatic Mat-LyLu cell model of rat prostate cancer (PCa). NGF increased peak VGSC current density in a time- and dose-dependent manner. NGF also shifted voltage to peak and the half-activation voltage to more positive potentials, and produced currents with faster kinetics of activation; sensitivity to the VGSC blocker tetrodotoxin (TTX) was not affected. The NGF-induced increase in peak VGSC current density was suppressed by both the pan-trk antagonist K252a, and the protein kinase A (PKA) inhibitor KT5720. NGF did not affect the Nav1.7 mRNA level, but the total VGSC alpha-subunit protein level was upregulated. NGF potentiated the cells' migration in Transwell assays, and this was not affected by TTX. We concluded that NGF upregulated functional VGSC expression in Mat-LyLu cells, with PKA as a signaling intermediate, but enhancement of migration by NGF was independent of VGSC activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据