4.6 Article

Microscopic current dynamics in nanoscale junctions

期刊

PHYSICAL REVIEW B
卷 75, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.115410

关键词

-

向作者/读者索取更多资源

So far, transport properties of nanoscale contacts have been studied mostly within the static scattering approach. The electron dynamics and the transient behavior of current flow, however, remain poorly understood. We present a numerical study of microscopic current flow dynamics in nanoscale quantum point contacts. We employ an approach that combines a microcanonical picture of transport with time-dependent density-functional theory. We carry out atomic and jellium model calculations to show that the time evolution of the current flow exhibits several noteworthy features, such as nonlaminarity and edge flow. We attribute these features to the interaction of the electron fluid with the ionic lattice, to the existence of pressure gradients in the fluid, and to the transient dynamical formation of surface charges at the nanocontact-electrode interfaces. Our results suggest that quantum transport systems exhibit hydrodynamical characteristics, which resemble those of a classical liquid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据