4.7 Article

Tetramethylpyrazine suppresses HIF-1α, TNF-α, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats

期刊

ACTA PHARMACOLOGICA SINICA
卷 28, 期 3, 页码 327-333

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1745-7254.2007.00514.x

关键词

tetramethylpyrazine; middle cerebral artery occlusion; HIF-1 alpha; caspase-3; TNF-alpha; thio barbituric acid-reactive substance

向作者/读者索取更多资源

Aim: To examine the detailed mechanisms underlying the inhibitory effect of tetramethylpyrazine (TMPZ) in inflammatory and apoptotic responses induced by middle cerebral artery occlusion (MCAO) in rats. Methods: MCAO-induced focal cerebral ischemia in rats was used in this study. The hypoxia-inducible factor-1 alpha (HIF-1 alpha), activation of caspase-3, and TNF-alpha mRNA transcription in ischemic regions were detected by immunoblotting and RT-PCR, respectively. Anti-oxidative activity was investigated using a thiobarbituric acid-reactive substance (TBARS) test in rat brain homogenate preparations. Results: We showed the statistical results of the infarct areas of solvent- and TMPZ (20 mg/kg)-treated groups at various distances from the frontal pole in MCAO-induced focal cerebral ischemia in rats. Treatment with TMPZ (20 mg/kg) markedly reduced the infarct area in all regions, especially in the third to fifth sections. MCAO-induced focal cerebral ischemia was associated with increases in HIF-1 alpha and the activation of caspase-3, as well as TNF-alpha transcription in ischemic regions. These expressions were markedly inhibited by treatment with TMPZ (20 mg/kg). However, TMPZ (0.5-5 mmol/L) did not significantly inhibit TBARS reaction in rat brain homogenates. Conclusion: The neuroprotective effect of TMPZ may be mediated at least by a portion of the inhibition of HIF-1 alpha and TNF-alpha activations, followed by the inhibition of apoptosis formation (active caspase-3), resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. Thus, TMPZ treatment may represent an ideal approach to lowering the risk of or improving function in ischemia-reperfusion brain injury-related disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据