4.7 Article

Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 67, 期 3-4, 页码 605-615

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2006.07.029

关键词

friction stir welding; metal matrix composites; particle reinforced composites; low-cycle fatigue; scanning electron microscopy

向作者/读者索取更多资源

Several studies have been recently focused on friction stir welding of aluminium alloys and some data are also reported on FSW of aluminium-based composites. The application of this solid state welding technique to particles reinforced composites seems very attractive, since it should eliminate some typical defects induced by the traditional fusion welding techniques, such as: gas occlusion, undesidered interfacial chemical reactions between the reinforcement and the molten matrix alloy, inhomogeneous reinforcement distribution after welding. The present work describes the effect of the FSW process on the microstructure and, consequently, on the tensile and low-cycle fatigue behaviour, of an aluminium matrix (AA7005) composite reinforced with 10 vol.% of Al2O3 particles (W7A10A). The microstructural characterization evidenced, in the FSW zone, a substantial grain refinement of the aluminium alloy matrix (due to dynamic recrystallization induced by the plastic deformation and frictional heating during welding) and a significant reduction of the particles size (due to the abrasive action of the tool). Tensile tests showed a high efficiency of the FSW joints (about 80% of the ultimate tensile strength). The low-cycle fatigue tests evidenced a fatigue life reduction for the FSW material respect to the base composite, particularly for high values of total strain range. The fracture mechanisms for the FSW specimens were those typical of metal matrix composites: interfacial decohesion, void nucleation and growth, as well as fracture of reinforcing particles, as shown by SEM analyses of the fracture surfaces. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据