4.7 Article

Comparing field performances of denuder techniques in the high Arctic

期刊

ATMOSPHERIC ENVIRONMENT
卷 41, 期 8, 页码 1604-1615

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2006.10.040

关键词

Arctic; atmospheric chemistry; annular denuder; multi-channel denuder

向作者/读者索取更多资源

A field evaluation between two annular denuder configurations was conducted during the spring of 2003 in the marine Arctic at Ny-Alesund, Svalbard. The IIA annular denuder system (ADS) employed a series of five single-channel annular denuders, a cyclone and a filter pack to discriminate between gas and aerosol species, while the EPA-Versatile Air Pollution Sampler (VAPS) configuration used a single multi-channel annular denuder to protect the integrity of PM2.5 sample filters by collecting acidic gases. We compared the concentrations of gaseous nitric acid (HNO3) nitrous acid (HONO), sulfur dioxide (SO2) and hydrochloric acid (HCl) measured by the two systems. Results for HNO3 and SO2 suggested losses of gas phase species within the EPA-VAPS inlet surfaces due to low temperatures, high relative humidities, and coarse particle sea-salt deposition to the VAPS inlet during sampling. The difference in HNO3 concentrations (55%) between the two data sets might also be due to the reaction between HNO3 and NaCl on inlet surfaces within the EPA-VAPS system. Furthermore, we detected the release of HCl from marine aerosol particles in the EPA-VAPS inlet during sampling contributing to higher observed concentrations. Based on this work we present recommendations on the application of denuder sampling techniques for low-concentration gaseous species in Arctic and remote marine locations to minimize sampling biases. We suggest an annular denuder technique without a large surface area inlet device in order to minimize retention and/or production of gaseous atmospheric pollutants during sampling. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据