4.5 Article Proceedings Paper

Residues of the human nuclear vitamin D receptor that form hydrogen bonding interactions with the three hydroxyl groups of 1α,25-dihydroxyvitamin D3

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsbmb.2006.12.045

关键词

vitamin D; vitamin D receptors; nuclear receptor

资金

  1. NIGMS NIH HHS [5S06 GM 008192-23, 5T32 GM 008253] Funding Source: Medline

向作者/读者索取更多资源

Most of the biological effects of 1,25-dihydroxyvitamin D-3 (hormone D) are mediated through the nuclear vitamin D receptor (VDR). Hormone binding induces conformational changes in VDR that enable the receptor to activate gene transcription. It is known that residues S237 and R274 form hydrogen bonds with the 1-hydroxyl group of hormone D, while residues Y143 and S278, and residues H305 and H397 form hydrogen bonds with the 3-hydroxyl and the 25-hydroxyl groups of the hormone. A series of VDR mutations were constructed (S237A, R274A, R274Q, Y143F, Y143A, S278A, H305A, and H397F; double mutants: S237A/R274A, Y143F/S278A, Y143A/S278A, and H305AIH397F). The relative binding affinities of the wild-type and variant VDRs were assessed. All of the mutants except H397F resulted in lower binding affinity compared to wild-type VDR. Binding to hormone was barely detectable in Y143F, H305A, and H305A/H397F mutants, and undetectable in mutants R274A, R274Q, Y143A, S237A/R274A, and Y143A/S278A, indicating the importance of these residues. Ability to activate gene transcription was also assessed. All of the VDR mutants, except the single mutant S278A, required higher doses of hormone D for half-maximal response. Defining the role of hormone D-VDR binding will lead to a better understanding of the vitamin D signal transduction pathway. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据