4.2 Article Proceedings Paper

Teleost fish scales: A unique biological model for the fabrication of materials for corneal stroma regeneration

期刊

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
卷 7, 期 3, 页码 757-762

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2007.503

关键词

fish scale collagen; corneal stroma regeneration; collagen-fibril orientation; bioinspired technology; biomaterial

向作者/读者索取更多资源

The corneal stroma is composed of multiple lamellae, each containing closely packed collagen fibrils. The orientation of fibrils in a lamella is parallel, but those in different lamellae are orthogonal. As a result, the corneal stroma has a characteristic orthogonal plywood-like structure. Such a highly-regulated three-dimensional arrangement of collagen fibrils gives strength and transparency to the corneal stroma, but it also presents a challenge in the fabrication of materials to replace it. A bioinspired technology is required to process such materials, but the regulatory mechanism of collagen-fibril orientation is still unknown. The low regenerating activity of the corneal stroma seems to be a major factor preventing progress in this field of research. A similarly highly-ordered arrangement of collagen fibrils can be seen in the basal plates of teleost fish scales. Moreover, the scales have high regenerating ability. When a scale is mechanically lost, a new scale is rapidly regenerated. The cells that produce the basal plates are extremely activated; thus, production of the highly-ordered collagen fibrils is very rapid. Therefore, the regenerating scales should be a uniquely helpful biological model for studying the regulatory mechanism of collagen-fibril orientation. Fish-scale collagen has another advantage for use as a biomaterial: the low probability of zoonotic infection. Therefore, scale collagen is a most promising biomaterial for fabricating three-dimensionally arranged collagen fibers to substitute for the corneal stroma. Three tasks that must be clarified for the bioinspired production of a corneal substitute from fish scale collagen are proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据