4.7 Article

Chemical, pulse radiolysis and density functional studies of a new, labile 5,6-indolequinone and its semiquinone

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 72, 期 5, 页码 1595-1603

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jo0615807

关键词

-

向作者/读者索取更多资源

The chemical and spectroscopic characterization of 5,6-indolequinones and their semiquinones, key transient intermediates in the oxidative conversion of 5,6-dihydroxyindoles to eumelanin biopolymers, is a most challenging task. In the present paper, we report the characterization of a novel, relatively long-lived 5,6-indolequinone along with its semiquinone using an integrated chemical, pulse radiolytic, and computational approach. The quinone was obtained by oxidation of 5,6-dihydroxy-3-iodoindole (1a) with o-chloranil in cold ethyl acetate or aqueous buffer: it displayed electronic absorption bands around 400 and 600 nm, was reduced to 1a with Na2S2O4, and reacted with o-phenylenediamine to give small amounts of 3-iodo-1H-pyrrolo[2,3-b]phenazine (2). The semiquinone exhibited absorption maxima at 380 nm (sh) and 520 nm and was detected as the initial species produced by pulse radiolytic oxidation of 1a at pH 7.0. DFT investigations indicated the 6-phenoxyl radical and the N-protonated radical anion as the most stable tautomers for the neutral and anion forms of the semiquinone, respectively. Calculated absorption spectra in water gave bands at 350 (sh) and 500 nm for the neutral form and at 310 and 360 (sh) nm for the anion. Disproportionation of the semiquinone with fast second-order kinetics (2k = 1.1 x 10(10) M-1 s(-1)) gave a chromophore with absorption bands resembling those of chemically generated 1a quinone. Computational analysis predicted 1a quinone to exist in vacuo as the quinone-methide tautomer, displaying low energy transitions at 380 and 710 nm, and in water as the o-quinone, with calculated absorption bands around 400 and 820 nm. A strong participation of a p orbital on the iodine atom in the 360-380 nm electronic transitions of the o-quinone and quinone-methide was highlighted. The satisfactory agreement between computational and experimental electronic absorption data would suggest partitioning of 1a quinone between the o-quinone and quinone-methide tautomers depending on the medium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据