4.7 Article

Early kinetics of amyloid fibril formation reveals conformational reorganisation of initial aggregates

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 366, 期 4, 页码 1351-1363

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2006.12.007

关键词

protein aggregation; kinetics; amyloid fibril; TANGO; peptides

向作者/读者索取更多资源

Understanding the initial steps of protein aggregation leading to the formation of amyloid fibrils remains a challenge. Here, the kinetics of such a process is determined for a misfolding protein model, ADA2h. The double nature of the very early kinetics suggests a step model of aggregation, where the denatured polypeptide folds into an aggregated beta-intermediate that subsequently reorganises into a more organised beta-sheet-richer structure that finally results in amyloid fibre formation. To determine the regions of the protein involved in amyloidosis, we have analysed a series of mutants previously made to study ADA2h folding. Using the algorithm TANGO, we have designed mutants that should enhance or decrease aggregation. Experimental analysis of the mutants shows that the C terminus of the molecule (comprising the last and edge beta-strand) is the major contributor to amyloid fibril formation, in good agreement with theoretical predictions. Comparison with proteins with similar topology reveals that family folds do not necessarily share the same principles of protein folding and/or aggregation. (c) 2006 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据