4.8 Article

Low-operating-voltage organic transistors made of bifunctional self-assembled monolayers

向作者/读者索取更多资源

Self-assembled monolayers (SAMs) are molecular assemblies that spontaneously form on an appropriate substrate dipped into a solution of an active surfactant in an organic solvent. Organic field-effect transistors are described, built on an SAM made of bifunctional molecules comprising a short alkyl chain linked to an oligothiophene moiety that acts as the active semiconductor. The SAM is deposited on a thin oxide layer (alumina or silica) that serves as a gate insulator. Platinum-titanium source and drain electrodes (either top- or bottom-contact configuration) are patterned by using electron-beam (e-beam) lithography, with a channel length ranging between 20 and 1000 nm. In most cases, ill-defined current-voltage (I-V) curves are recorded, attributed to a poor electrical contact between platinum and the oligothiophene moiety. However, a few devices offer well-defined curves with a clear saturation, thus allowing an estimation of the mobility: 0.0035 cm(2) V-1 s(-1) for quaterthiophene and 8 x 10(-4) cm(2) V-1 s(-1) for terthiophene. In the first case, the on-off ratio reaches 1800 at a gate voltage of -2 V. Interestingly, the device operates at room temperature and very low bias, which may open the way to applications where low consumption is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据