4.8 Article

Guest-induced chirality in the ferrimagnetic nanoporous diamond framework Mn3(HCOO)6

向作者/读者索取更多资源

Chiral magnets are obtained by inclusion of chiral guest molecules into the channels of an achiral nanoporous ferrimagnet consisting of the Mn-3(HCOO)(6) (1) framework. Insertion of the R or the S enantiomer of 2-chloropropan-1-ol (CH3C*HClCH2OH) in the chiral pores of the previously emptied framework (space group P2(1)/c) results in the two corresponding chiral solids (1R and IS, space group P2(1)), while insertion of a racemic mixture of the two enantiomers retains the achirality of the host for the meso solid (1RS, space group P2(1)/c). The R guest is ordered in the M channels while the S guest is ordered in the P channels. In contrast, the R guests in the P channels and the S guests in the M channels are disordered on two crystallographic orientations. For the racemic mixture of the two enantiomers in 1RS, random disorder of guests in both channels is observed. Thus, the localization of the guest molecule depends on the nature of the surface to recognize the guest of a particular chirality. The guest inclusion compounds are thermally stable. The 1R and 1S compounds are optically active. All the compounds adopt a ferrimagnetic ground state. Compared to the host framework of 1 without guest, the Curie temperature decreases for both 1R and 1S but increases for 1RS. ne additional interactions between the framework and the inserted guest alcohols strengthen the lattice via hydrogen bonds and other electrostatic forces, and it might account for the significant lowering of the lattice contribution as well as the magnetic component to the specific heat capacity upon guest loading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据