4.7 Article Proceedings Paper

Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 91, 期 5, 页码 390-393

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2006.10.020

关键词

organic photovoltaics; impedance spectroscopy; doping; kink; model

向作者/读者索取更多资源

The current-voltage characteristic and the performance of organic bulk-heterojunction solar cells are very sensitive to small variations in the production steps or environmental influences. In our experiments, we found a large variation of the short-circuit current, which does not correspond to the device thickness as one might expect. The fill factor of some devices is below 25% under illumination, while the best devices have a fill factor of about 70%. Electrical impedance spectroscopy can provide information about the conductivity of different regions within the device. In earlier measurements, it was observed that devices with a thick absorber layer might consist of a conductive bulk region and a very poorly conductive depletion region at the metal contact. Using a standard semiconductor device model, it is shown in this paper that this reduces the charge collection efficiency under short-circuit conditions, as there is no electrical field in the bulk region, supporting the charge separation. For devices with the low fill factor, a thin-current limiting layer under forward bias can be identified by electrical impedance spectroscopy and is suggestive of a corroded metal contact. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据