4.8 Article

Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0607852104

关键词

bioadhesion; Mytilus edulis

资金

  1. NIDCR NIH HHS [R01 DE015415, DE 015415] Funding Source: Medline

向作者/读者索取更多资源

Mussels adhere to a variety of surfaces by depositing a highly specific ensemble of 3,4-dihydroxyphenyl-L-alanine (DOPA) containing proteins. The adhesive properties of Mytilus edulis foot proteins mfp-1 and mfp-3 were directly measured at the nano-scale by using a surface forces apparatus (SFA). An adhesion energy of order IN approximate to 3 x 10(-4) J/m(2) was achieved when separating two smooth and chemically inert surfaces of mica (a common alumino-silicate clay mineral) bridged or glued by mfp-3. This energy corresponds to an approximate force per plaque of approximate to 100 gm, more than enough to hold a mussel in place if no peeling occurs. In contrast, no adhesion was detected between mica surfaces bridged by mfp-1. AFM imaging and SFA experiments showed that mfp-1 can adhere well to one mica surface, but is unable to then link to another (unless sheared), even after prolonged contact time or increased load (pressure). Although mechanistic explanations for the different behaviors are not yet possible, the results are consistent with the apparent function of the proteins, i.e., mfp-1 is disposed as a protective coating, and mfp-3 as the adhesive or glue that binds mussels to surfaces. The results suggest that the adhesion on mica is due to weak physical interactions rather than chemical bonding, and that the strong adhesion forces of plaques arise as a consequence of their geometry (e.g., their inability to be peeled off) rather than a high intrinsic surface or adhesion energy, W.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据