4.8 Article

Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0608360104

关键词

chondrocytes; endothelial cell; gene targeting

向作者/读者索取更多资源

Mutations in filamin B (FLNB), a gene encoding a cytoplasmic actin-binding protein, have been found in human skeletal disorders, including boomerang dysplasia, spondylocarpotarsal syndrome, Larsen syndrome, and atelosteogenesis phenotypes I and III. To examine the role of FLNB in vivo, we generated mice with a targeted disruption of Flnb. Fewer than 3% of homozygous embryos reached term, indicating that Flnb is important in embryonic development. Heterozygous mutant mice were indistinguishable from their wild-type siblings. Flnb was ubiquitously expressed; strong expression was found in endothelial cells and chondrocytes. Flnb-deficient fibroblasts exhibited more disorganized formation of actin filaments and reduced ability to migrate compared with wild-type controls. Flnb-deficient embryos exhibited impaired development of the microvasculature and skeletal system. The few Flnb-deficient mice that were born were very small and had severe skeletal malformations, including scoliotic and kyphotic spines, lack of intervertebral discs, fusion of vertebral bodies, and reduced hyaline matrix in extremities, thorax, and vertebrae. These mice died or had to be euthanized before 4 weeks of age. Thus, the phenotypes of Flnb-deficient mice closely resemble those of human skeletal disorders with mutations in FLNB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据