4.0 Article

Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: Development and prospects

期刊

FIBRE CHEMISTRY
卷 39, 期 2, 页码 163-172

出版社

CONSULTANTS BUREAU/SPRINGER
DOI: 10.1007/s10692-007-0032-9

关键词

-

向作者/读者索取更多资源

The scientific principles of direct dissolution of cellulose in the NMMO-water system demonstrate the major possibility of obtaining concentrated spinning solutions and spinning hydrated cellulose fibres from them. The specific features of the properties of NMMO (high boiling point and insufficient thermal stability) that dissolves the NMMO-water system (narrow concentration range, optimum for dissolution of cellulose) makes it necessary to recycle the washing water by evaporating it, which causes high power consumption for this process. It is expedient to examine the possibilities of membrane technologies, including electrodialysis, for solving problems of recycling the solvent and cutting power consumption. However, this path only allows partially concentrating used washing water, since there is the danger of crystallization of NMMO di-and monohydrate. Spinning through an air gap from highly viscous solutions with long relaxation times at high spinneret draw ratios results in highly oriented fibres with high tensile rigidity (high deformation modulus). Fabrication of fibres whose properties correspond to ordinary viscose fibres will perhaps require going away from highly viscous solutions to a lower concentration and spinning by the ordinary wet method, but the volume of solvent used increases significantly, recycling it is more difficult, and power consumption increases. For the same reason of high orientation, the fibres exhibit important fibrillation when wet, and a peach skin effect is formed in the finished textiles. To reduce fibrillation, special treatments of the fabrics must be used, biofinishing, for example. During use of the articles, fibrillation can reappear, in laundering, for example. The technology for fabricating fibres of the Lyocell type requires solving many problems. Developing research on selecting alternative solvents and dissolving systems for direct dissolution of cellulose to obtain concentrated spinning solutions is simultaneously useful.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据