4.5 Article

Chemical oxidative polymerization of safranines

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 9, 页码 2188-2199

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp067407w

关键词

-

向作者/读者索取更多资源

Phenosafranine and safranine have been oxidized with ammonium peroxydisulfate in acidic aqueous solution. The oxidative coupling of both safranines was proved by gel permeation chromatography demonstrating the presence of oligomeric chains of mass-average molar masses 6500 and 4500 g mol(-1) for polyphenosafranine and polysafranine, respectively. A theoretical study of the mechanism of safranine and phenosafranine polymerization was based on the MNDO-PM3 semiempirical quantum chemical computations of the heat of formation of dimeric reaction intermediates, taking into account solvation effects. The study of the redox properties of the hydrated safranines and their reactive species shows that nitrenium cations are the main reactive species generated by the oxidation of the parent safranines with a two-electron oxidant, peroxydisulfate, in the initiation phase. The dominant dimers of safranines are formed by N-C coupling reactions between nitrenium cations and the parent safranines. The main coupling reactions of phenosafranine are N-C2 (C8) and N-C4 (C6); N-C4 (C6) is the dominant coupling mode for safranine. The molecular structure of oligosafranines has been studied by FTIR, Raman, and UV-vis spectroscopies. Besides prevalent unoxidized monomeric units, polymerization products of safranines contain also the iminoquinonoid and newly formed fused phenazine units.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据