4.6 Article

Photocatalytic patterning of monolayers for the site-selective deposition of quantum dots onto TiO2 surfaces

期刊

LANGMUIR
卷 23, 期 6, 页码 3432-3439

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la063161a

关键词

-

向作者/读者索取更多资源

A novel photochemical mechanism is reported for the site-selective deposition of quantum dots onto nanocrystalline TiO2 films. The patterning mechanism involves the combination of surfactant-mediated self-assembly and monolayer photolithography. In the self-assembly process, CdS and CdSe quantum dots were attached to TiO2 surfaces through bifunctional mercaptoalkanoic acid (MAA) linkers. MAAs were adsorbed to the TiO2 surface as the deprotonated carboxylates, primarily through monodentate coordination to Ti4+ sites. CdSe quantum dots were bound to the terminal thiol groups of surface-adsorbed MAAs, with a surface adduct formation constant, K-ad, of (2.1 +/- 0.7) x 10(4) M-1. The color and optical density of the quantum dot-functionalized TiO2 films were tunable. Monolayer photopatterning involved the TiO2-catalyzed oxidative degradation of surface-adsorbed mercaptohexadecanoic acid (MHDA). A mechanism is proposed wherein MHDA degradation occurs through both oxidative decarboxylation and the formation of interchain disulfides. These MHDA photodegradation processes regulate the extent to which CdSe quantum dots adsorb onto the TiO2 surface. Illumination through a photomask yielded optically patterned, quantum dot-functionalized TiO2 films that were characterized by scanning electron microscopy and energy-dispersive X-ray analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据