4.6 Article

The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces

期刊

LANGMUIR
卷 23, 期 6, 页码 3118-3122

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la0627720

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL079147-01, R01 HL 079147-01, R01 HL079147-02, R01 HL079147-04, R01 HL079147, R01 HL079147-03] Funding Source: Medline

向作者/读者索取更多资源

Polydimethylsiloxane (PDMS) is a widely used material for manufacturing lab-on-chip devices. However, the hydrophobic nature of PDMS is a disadvantage in microfluidic systems. To transform the hydrophobic PDMS surface to hydrophilic, it was treated with radio-frequency (RF) air plasma at 150, 300, and 500 mTorr pressures for up to 30 min. Following the surface treatment, the PDMS specimens were stored in air, deionized water, or 0.14 M NaCl solution at 4 degrees C, 20 degrees C, and 70 degrees C. The change in the hydrophilicity (wettability) of the PDMS surfaces was followed by contact angle measurements and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of time. As an effect of the RF plasma treatment, the contact angles measured on PDMS surfaces dropped from 113 +/- 4 degrees to 9 +/- 3 degrees. The chamber pressure and the treatment time had no or negligible effect on the results. However, the PDMS surface gradually lost its hydrophilic properties in time. The rate of this process is influenced by the difference in the dielectric constants of the PDMS and its ambient environment. It was the smallest at low temperatures in deionized water and largest at high temperatures in air. Apparently, the OH groups generated on the PDMS surface during the plasma treatment tended toward a more hydrophilic/less hydrophobic environment during the relaxation processes. The correlation between the FTIR-ATR spectral information and the contact angle data supports this interpretation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据