4.6 Article

Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming

期刊

JOURNAL OF APPLIED PHYSICS
卷 101, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2710334

关键词

-

向作者/读者索取更多资源

This article discusses the feasibility of a new microforming technique-laser dynamic forming (LDF). LDF is a new hybrid forming process, combining the advantages of laser shock peening, and metal forming, with an ultra high strain rate forming utilizing laser shock waves. Experiments are conducted on copper foils to demonstrate this forming process. After the forming process, the mechanical and microstructure of the formed work piece will be characterized. Electron backscatter diffraction will be used to investigate the grain microstructure and misorientations quantitatively. The residual stress distributions will be measured using x-ray diffraction. The key factors for the improved formability of this high strain rate microforming process will be discussed in detail. With further development, LDF may become an important microforming technology for various materials. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据