4.6 Article

Polarization-consistent versus correlation-consistent basis sets in predicting molecular and spectroscopic properties

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 111, 期 10, 页码 1927-1932

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp065008v

关键词

-

向作者/读者索取更多资源

Compared to the correlation-consistent basis sets, it is not known if polarization-consistent pc-n basis sets, which were initially developed for HF and DFT calculations, can provide a monotonic and faster convergence toward the basis-set limit for results at correlated levels as well as better accuracy for a similar number of basis functions. It is also not known whether the pc-n basis sets can compute second derivatives of energy, such as nuclear magnetic shielding tensors, efficiently. To address these questions, the pc-n (n = 1-4), cc-pVxZ, and/or aug-cc-pVxZ (x = D, T, Q, 5, and 6) basis sets were used to compute the molecular and/or spectroscopic parameters of H-2, H2O, and NH3 at the RHF, B3-LYP, MP2, and/or CCSD(T) levels of theory. The results show that compared to the cc-pVxZ and/or aug-cc-pVxZ basis sets the pc-n basis sets yield faster convergence toward the basis-set limit but equivalent molecular and/or spectroscopic parameters in the basis-set limit at the RHF, DFT, MP2, and CCSD(T) levels. Because the pc-n basis sets show faster convergence, fewer basis-set functions are needed to reach the accuracy obtained with the aug-cc-pVxZ basis sets, enabling faster calculations and less computer storage space. The results also show that the pc-n basis sets, in conjunction with the locally dense basis-set approach, could be applied to predict accurate parameters; thus, they could be used to estimate accurate molecular or spectroscopic properties (e.g., NMR parameters) for larger systems such as the active site of enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据