4.6 Article

Dendritic voltage-gated K+ conductance gradient in pyramidal neurones of neocortical layer 5B from rats

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 579, 期 3, 页码 737-752

出版社

BLACKWELL PUBLISHING
DOI: 10.1113/jphysiol.2006.122564

关键词

-

向作者/读者索取更多资源

Voltage-gated potassium channels effectively regulate dendritic excitability in neurones. It has been suggested that in the distal apical dendrite of layer 5B (L5B) neocortical pyramidal neurones, K+ conductances participate in active dendritic synaptic integration and control regenerative dendritic potentials. The ionic mechanism for triggering these regenerative potentials has yet to be elucidated. Here we used two-electrode voltage clamp (TEVC) to quantitatively record K+ conductance densities of a sustained K+ conductance in the soma and apical dendrite of L5B neurones of adult rats. We report that the somatic and proximal dendritic sustained voltage-gated K+ conductance density is more than 10-fold larger than previous estimates. The results obtained using TEVC were corroborated using current-clamp experiments in combination with compartmental modelling. Possible error sources, including inaccurate measurement of the passive membrane parameters and unknown axonal and basal dendritic conductance distributions, were shown not to distort the density estimation considerably. The sustained voltage-gated K+ conductance density was found to decrease steeply along the apical dendrite. The steep negative K+ conductance density gradient along the apical dendrite may help to define a distal, low-threshold region for amplification of distal synaptic input in L5B pyramidal neurones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据