4.6 Article

Excited-state intramolecular proton transfer in 2-(3′-hydroxy-2′-pyridyl)benzoxazole.: Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 111, 期 10, 页码 1814-1826

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0653813

关键词

-

向作者/读者索取更多资源

The influence of solvent, temperature, and viscosity on the phototautomerization processes of a series of o-hydroxyarylbenzazoles was studied by means of ultraviolet-visible (UV-vis) absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. The compounds studied were 2-(2'-hydroxyphenyl)benzimidazole (HBI), 2-(2'-hydroxyphenyl)benzoxazole (HBO), 2-(2'-hydroxyphenyl)benzothiazole (HBT), 2-(3'-hydroxy-2'-pyridyl)benzimidazole (HPyBI), and the new derivative 2-(3'-hydroxy-2'-pyridyl)benzoxazole (HPyBO), this one studied in neutral and acid media. All of these compounds undergo an excited-state intramolecular proton transfer (ESIPT) from the hydroxyl group to the benzazole N3 to yield an excited tautomer in syn conformation. A temperature- and viscosity-dependent radiationless deactivation of the tautomer has been detected for all compounds except HBI and HPyBI. We show that this radiationless decay also takes place for 2-(3-methyl-1,3-benzothiazol-3-ium-2-yl)benzenolate (NMeOBT), the N-methylated analog of the tautomer, whose ground-state structure has anti conformation. In ethanol, the radiationless decay shows intrinsic activation energy for HPyBO and HBO; however, it is barrierless for HBT and NMeOBT and controlled instead by the solvent dynamics. The relative efficiency of the radiationless decay in the series of molecules studied supports the hypothesis that this transition is connected with a charge-transfer process taking place in the tautomer, its efficiency being related to the strength of the electron donor (dissociated phenol or pyridinol moiety) and electron acceptor (protonated benzazole). We propose that the charge transfer is associated with a large-amplitude conformational change of the tautomer, the process leading to a nonfluorescent charge-transfer intermediate. The previous ESIPT step generates the structure with the suitable redox pair to undergo the charge-transfer process; therefore, an excited-state intramolecular coupled proton and charge transfer takes place for these compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据