4.6 Article

Catalase overexpression fails to attenuate allergic airways disease in the mouse

期刊

JOURNAL OF IMMUNOLOGY
卷 178, 期 6, 页码 3814-3821

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.178.6.3814

关键词

-

向作者/读者索取更多资源

Oxidative stress is a hallmark of asthma, and increased levels of oxidants are considered markers of the inflammatory process. Most studies to date addressing the role of oxidants in the etiology of asthma were based on the therapeutic administration of low m.w. antioxidants or antioxidant mimetic compounds. To directly address the function of endogenous hydrogen peroxide in the pathophysiology of allergic airway disease, we comparatively evaluated mice systemically overexpressing catalase, a major antioxidant enzyme that detoxifies hydrogen peroxide, and C57BL/6 strain matched controls in the OVA model of allergic airways disease. Catalase transgenic mice had 8-fold increases in catalase activity in lung tissue, and had lowered DCF oxidation in tracheal epithelial cells, compared with C57BL/6 controls. Despite these differences, both strains showed similar increases in OVA-specific IgE, IgG1, and IgG2a levels, comparable airway and tissue inflammation, and identical increases in procollagen 1 mRNA expression, following sensitization and challenge with OVA. Unexpectedly, mRNA expression of MUC5AC and CLCA3 genes were enhanced in catalase transgenic mice, compared with C57BL/6 mice subjected to Ag. Furthermore, when compared with control mice, catalase overexpression increased airway hyperresponsiveness to methacholine both in naive mice as well as in response to Ag. In contrast to the prevailing notion that hydrogen peroxide is positively associated with the etiology of allergic airways disease, the current findings suggest that endogenous hydrogen peroxide serves a role in suppressing both mucus production and airway hyperresponsiveness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据