4.6 Article

Large-scale topology optimization using preconditioned Krylov subspace methods with recycling

期刊

出版社

WILEY
DOI: 10.1002/nme.1798

关键词

topology optimization; three-dimensional analysis; iterative methods; Krylov subspace recycling; preconditioning; large-scale computation

向作者/读者索取更多资源

The computational bottleneck of topology optimization is the solution of a large number of linear systems arising in the finite element analysis. We propose fast iterative solvers for large three-dimensional topology optimization problems to address this problem. Since the linear systems in the sequence of optimization steps change slowly from one step to the next, we can significantly reduce the number of iterations and the runtime of the linear solver by recycling selected search spaces from previous linear systems. In addition, we introduce a MINRES (minimum residual method) version with recycling (and a short-term recurrence) to make recycling more efficient for symmetric problems. Furthermore, we discuss preconditioning to ensure fast convergence. We show that a proper rescaling of the linear systems reduces the huge condition numbers that typically occur in topology optimization to roughly those arising for a problem with constant density. We demonstrate the effectiveness of our solvers by solving a topology optimization problem with more than a million unknowns on a fast PC. Copyright (c) 2006 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据