4.4 Article

Glutamate 107 in subunit I of the cytochrome bd quinol oxidase from Escherichia coli is protonated and near the heme d/heme b595 binuclear center

期刊

BIOCHEMISTRY
卷 46, 期 11, 页码 3270-3278

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi061946+

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL016101, HL16101] Funding Source: Medline

向作者/读者索取更多资源

Cytochrome bd is a quinol oxidase from Escherichia coli, which is optimally expressed under microaerophilic growth conditions. The enzyme catalyzes the two-electron oxidation of either ubiquinol or menaquinol in the membrane and scavenges O-2 at low concentrations, reducing it to water. Previous work has shown that, although cytochrome bd does not pump protons, turnover is coupled to the generation of a proton motive force. The generation of a proton electrochemical gradient results from the release of protons from the oxidation of quinol to the periplasm and the uptake of protons used to form H2O from the cytoplasm. Because the active site has been shown to be located near the periplasmic side of the membrane, a proton channel must facilitate the delivery of protons from the cytoplasm to the site of water formation. Two conserved glutamic acid residues, E107 and E99, are located in transmembrane helix III in subunit I and have been proposed to form part of this putative proton channel. In the current work, it is shown that mutations in either of these residues results in the loss of quinol oxidase activity and can result in the loss of the two hemes at the active site, hemes d and b(595). One mutant, E107Q, while being totally inactive, retains the hemes. Fourier transform infrared (FTIR) redox difference spectroscopy has identified absorption bands from the COOH group of E107. The data show that E107 is protonated at pH 7.6 and that it is perturbed by the reduction of the heme d/heme b(595) binuclear center at the active site. In contrast, mutation of an acidic residue known to be at or near the quinol-binding site (E257A) also inactivates the enzyme but has no substantial influence on the FTIR redox difference spectrum. Mutagenesis shows that there are several acidic residues, including E99 and E107 as well as D29 (in CydB), which are important for the assembly or stability of the heme d/heme b(595) active site.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据