4.5 Article

Thermal stability of Humicola insolens cutinase in aqueous SDS

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 11, 页码 2941-2947

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp065896u

关键词

-

向作者/读者索取更多资源

Cutinase from Humicola insolens (HiC) has previously been shown to bind anomalously low amounts of the anionic surfactant sodium dodecylsulfate (SDS). In the current work, we have applied scanning and titration calorimetry to investigate possible relationships between this weak interaction and the effect of SDS on the equilibrium and kinetic stability of HiC. The results are presented in a state-diagram, which specifies the stable form of the protein as a function of temperature and SDS concentration. In comparison with other proteins, the equilibrium stability HiC is strongly decreased by SDS. For low SDS concentrations (SDS:HiC molar ratio, MR < 8) this trait is also found for the kinetically controlled thermal aggregation of the protein. At higher MR, however, SDS stabilizes noticeably against irreversible aggregation. We suggest that this relies on electrostatic repulsion of the increasingly negatively charged HiC-SDS complexes. The combined interpretation of calorimetric and binding data allowed the calculation of the changes in enthalpy and heat capacity for the association of HiC and SDS near the saturation point. The latter function was about -410 J mol(-1) K(-1) or similar to the heat capacity change for micelle formation (-470 J mol(-1) K(-1)). This suggests that SDS is hydrated to a similar extent in the micellar and protein associated forms. The results are discussed in terms of the Wyman theory for linked equilibria. Quantitative analysis along these lines suggests that the reversible thermal unfolding of the protein couples to the binding of 2-3 additional SDS molecules. This corresponds to a 15-20% increase in the binding number. Wyman theory also rationalizes relationships between low affinity and high susceptibility observed in this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据