4.6 Article

Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 111, 期 11, 页码 2193-2199

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp067721q

关键词

-

向作者/读者索取更多资源

We present a generalized energy-based fragmentation (GEBF) approach for approximately predicting the ground-state energies and molecular properties of large molecules, especially those charged and polar molecules. In this approach, the total energy (or properties) of a large molecule can be approximately obtained from energy (or properties) calculations on various small subsystems, each of which is constructed to contain a certain fragment and its local surroundings within a given distance. In the quantum chemistry calculation of a given subsystem, those distant atoms (outside this subsystem) are modeled as background point charges at the corresponding nuclear centers. This treatment allows long-range electrostatic interaction and polarization effects between distant fragments to be taken into account approximately, which are very important for polar and charged molecules. We also propose a new fragmentation scheme for constructing subsystems. Our test calculations at the Hartree-Fock and second-order Moller-Plesser perturbation theory levels demonstrate that the approach could yield satisfactory ground-state energies, the dipole moments, and static polarizabilities for polar and charged molecules such as water clusters and proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据