4.6 Article

The effect of high-temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes

期刊

MATERIALS RESEARCH BULLETIN
卷 42, 期 3, 页码 474-481

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2006.06.023

关键词

nanostructures; electrical properties; Raman spectroscopy; X-ray diffraction

向作者/读者索取更多资源

Systematic work has been performed on the effect of high-temperature annealing on structural defects and impurities of well-aligned carbon nanotubes (ACNTs) in this paper. ACNTs had been prepared by CVD process with ferrocene as catalyst and then the as-grown samples were experienced heat treatment (HT) from 1800 to 3000 degrees C. X-ray diffraction, Raman spectroscopy and electron dispersive spectroscopy (EDS), etc., have been used to analyze the effect of annealing. Results indicate that some impurities can be removed once annealing temperature exceeds vaporization point of corresponding metal or non-metal. Desorption of 0 should be attributed to reduced active sites of dangling covalent bonds after heat treatment. Specious discrepancy about interlayer spacing resulted from XRD and Raman tests show that although high-temperature heat treatment can remove in-plane defects of carbon nanotubes greatly, interlayer spacing between graphene shells could not be reduced effectively because of the special concentric cylindrical structure of nanotubes. Electrical resistivity of ACNTs block is about three orders higher than that of copper even after HT at 3000 degrees C, and the anisotropy of electrical properties increased once experienced heat treatment at increased temperature. (C) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据