4.6 Article

Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen

期刊

LANGMUIR
卷 23, 期 7, 页码 4064-4070

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la063243z

关键词

-

向作者/读者索取更多资源

This article describes the synthesis of branched flower-like gold (Au) nanocrystals and their electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Gold nanoflowers (GNFs) were obtained by a one-pot synthesis using N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES) as a reducing/stabilizing agent. The GNFs have been characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical measurements. The UV-visible spectra show two bands corresponding to the transverse and longitudinal surface plasmon (SP) absorption at 532 and 720 nm, respectively, for the colloidal GNFs. The GNFs were self-assembled on a sol-gel-derived silicate network, which was preassembled on a polycrystalline Au electrode and used for electrocatalytic applications. The GNFs retain their morphology on the silicate network; the UV-visible diffuse reflectance spectra (DRS) of GNFs on the silicate network show longitudinal and transverse bands as in the case of colloidal GNFs. The GNFs show excellent electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Oxidation of methanol in alkaline solution was observed at similar to 0.245 V, which is much less positive than that on an unmodified polycrystalline gold electrode. Reduction of oxygen to H2O2 and the further reduction of H2O2 to water in neutral pH were observed at less negative potentials on the GNFs electrode. The electrocatalytic activity of GNFs is significantly higher than that of the spherically shaped citrate-stabilized Au nanoparticles (SGNs).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据