4.7 Article

Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression

期刊

JOURNAL OF NEUROSCIENCE
卷 27, 期 13, 页码 3523-3534

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4340-06.2007

关键词

phospholipase C; LTD; actin; phosphatidylinositol-(4,5)-bisphosphate; A kinase-anchoring protein; PSD95; AMPA receptor

资金

  1. NINDS NIH HHS [R01 NS040701, R56 NS040701, NS40701] Funding Source: Medline

向作者/读者索取更多资源

NMDA receptor (NMDAR)-dependent hippocampal synaptic plasticity underlying learning and memory coordinately regulates dendritic spine structure and AMPA receptor (AMPAR) postsynaptic strength through poorly understood mechanisms. Induction of longterm depression (LTD) activates protein phosphatase 2B/calcineurin (CaN), leading to dendritic spine shrinkage through actin depolymerization and AMPAR depression through receptor dephosphorylation and internalization. The scaffold proteins A-kinase-anchoring protein 79/150 (AKAP79/150) and postsynaptic density 95 (PSD95) form a complex that controls the opposing actions of the cAMP-dependent protein kinase (PKA) and CaN in regulation of AMPAR phosphorylation. The AKAP79/150-PSD95 complex is disrupted in hippocampal neurons during LTD coincident with internalization of AMPARs, decreases in PSD95 levels, and loss of AKAP79/150 and PKA from spines. AKAP79/150 is targeted to spines through binding F-actin and the phospholipid phosphatidylinositol-(4,5)bisphosphate (PIP2). Previous electrophysiological studies have demonstrated that inhibition of phospholipase C (PLC)-catalyzed hydrolysis of PIP2 inhibits NMDAR-dependent LTD; however, the signaling mechanisms that link PLC activation to alterations in dendritic spine structure and AMPAR function in LTD are unknown. We show here that NMDAR stimulation of PLC in cultured hippocampal neurons is necessary for AKAP79/150 loss from spines and depolymerization of spine actin. Importantly, we demonstrate that NMDAR activation of PLC is also necessary for decreases in spine PSD95 levels and AMPAR internalization. Thus, PLC signaling is required for structural and functional changes in spine actin, PSD scaffolding, and AMPAR trafficking underlying postsynaptic expression of LTD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据