4.5 Article

Time-dependent density functional calculations of phosphorescence parameters for fac-tris(2-phenylpyridine) iridium

期刊

CHEMICAL PHYSICS
卷 333, 期 2-3, 页码 157-167

出版社

ELSEVIER
DOI: 10.1016/j.chemphys.2007.01.021

关键词

Ir(ppy)(3); phosphorescence; OLED; DFT

向作者/读者索取更多资源

fac-Tris(2-phenylpyridine) iridium [fac-Ir(PPY)(3)] produces strong phosphorescence and has therefore been used as materials in organic light emitting diodes to overcome the efficiency limit imposed by the formation of triplet excitons. Accounting for this circumstance we present in this paper a theoretical study of phosphorescence in the Ir(PPY)(3) complex. The spin-orbit coupling effects and the radiative lifetime in the high temperature limit (T) are calculated by time-dependent density functional theory using quadratic response technology in order to elucidate the main mechanism of the phosphorescence. It is found that the orbital structure of the T, state has a localized character and that the T1 -> S0 transition is determined mostly by charge transfer from one of the ligands to the metal. At the vertical S-0-T-1 excitation the triplet state is highly delocalized among all three ligands and has a mixed pi pi* and metal-to-ligand charge transfer character. The intensity borrowing from the S-0 to S-5 transitions is mostly responsible for the strong phosphorescence emission from the x and y spin sublevels. Our results concord with the experimental data on temperature and magnetic field dependence of the phosphorescence kinetics. The calculated radiative lifetime in the high temperature limit agrees well with the measured decay times (2 mu s) accounting for negligible non-radiative quenching of the lowest triplet state. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据