4.6 Article

Redox control of fast ligand dissociation from Escherichia coli cytochrome bd

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2007.01.118

关键词

bacterial respiration; nitrosative stress; pathogenicity; stopped-flow spectroscopy

向作者/读者索取更多资源

Bacterial bd-type quinol oxidases, such as cytochrome bd from Escherichia coli, contain three hemes, but no copper. In contrast to heme-copper oxidases and similarly to globins, single electron-reduced cytochrome bd forms stable complexes with 02, NO and CO at ferrous heme d. Kinetics of ligand dissociation from heme d(2+) in the single electron- and fully-reduced cytochrome bd from E coli has been investigated by rapid mixing spectrophotometry at 20 degrees C. Data show that (i) O-2 dissociates at 78 s(-1), (ii) NO and CO dissociation is fast as compared to heme-copper oxidases and (iii) dissociation in the single electron-reduced state is hindered as compared to the fully-reduced enzyme. Presumably, rapid ligand dissociation requires reduced heme b(595). As NO, an inhibitor of respiratory oxidases, is involved in the immune response against microbial infection, the rapid dissociation of NO from cytochrome bd may have important bearings on the patho-physiology of enterobacteria. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据