4.8 Article

Colossal shear-strength enhancement of low-density cubic BC2N by nanoindentation

期刊

PHYSICAL REVIEW LETTERS
卷 98, 期 13, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.135505

关键词

-

向作者/读者索取更多资源

Recently synthesized low-density cubic BC2N exhibits surprisingly high shear strength inferred by nanoindentation in stark contrast to its relatively low elastic moduli. We show by first-principles calculation that this intriguing phenomenon can be ascribed to a novel structural hardening mechanism due to the compressive stress beneath the indenter. It significantly strengthens the weak bonds connecting the shear planes, yielding a colossal enhancement in shear strength. The resulting biaxial stress state produces atomistic fracture modes qualitatively different from those under pure shear stress. These results provide the first consistent explanation for a variety of experiments on the low-density cubic BC2N phase across a large range of strain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据