4.5 Article

Renal compensation to chronic hypoxic hypercapnia:: downregulation of pendrin and adaptation of the proximal tubule

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 292, 期 4, 页码 F1256-F1266

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00220.2006

关键词

cortical collecting duct; chloride regulation; intercalated cells; bicarbonate

向作者/读者索取更多资源

The molecular basis for the renal compensation to respiratory acidosis and specifically the role of pendrin in this condition are unclear. Therefore, we studied the adaptation of the proximal tubule and the collecting duct to respiratory acidosis. Male Wistar-Hannover rats were exposed to either hypercapnia and hypoxia [8% CO2 and 13% O-2 (hypercapnic, n = 6) or normal air (controls, n = 6)] in an environmental chamber for 10 days and were killed under the same atmosphere. In hypercapnic rats, arterial pH was lower than controls (7.31 +/- 0.01 vs. 7.39 +/- 0.01, P = 0.03), blood HCO3-concentration was increased (42 +/- 0.9 vs. 32 +/- 0.24 mM, P < 0.001), arterial PCO2 was increased (10.76 +/- 0.4 vs. 7.20 +/- 0.4 kPa, P < 0.001), and plasma chloride concentration was decreased (92.2 +/- 0.7 vs. 97.2 +/- 0.5 mM, P < 0.001). Plasma aldosterone levels were unchanged. In the proximal tubule, immunoblotting showed an increased expression of sodium/bicarbonate exchanger protein (188 +/- 22 vs. 100 +/- 11%, P = 0.005), confirmed by immunohistochemistry. Total Na/H exchanger protein expression in the cortex was unchanged by immunoblotting (119 +/- 10 vs. 100 +/- 11%, P = 0.27) and immunohistochemistry. In the cortex, the abundance of pendrin was decreased (51 +/- 9 vs. 100 +/- 7%, P = 0.003) by immunoblotting. Immunohistochemistry revealed that this decrease was clear in both cortical collecting ducts (CCDs) and connecting tubules (CNTs). This demonstrates that pendrin expression can be regulated in acidotic animals with no changes in aldosterone levels and no external chloride load. This reduction of pendrin expression may help in redirecting the CNT and CCD toward chloride excretion and bicarbonate reabsorption, contributing to the increased plasma bicarbonate and decreased plasma chloride of chronic respiratory acidosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据