4.5 Article

Attractor modeling and empirical nonlinear model reduction of dissipative dynamical systems

期刊

INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
卷 17, 期 4, 页码 1199-1219

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S021812740701777X

关键词

attractor; model reduction; POD; KL analysis; ISOMAP; singular perturbation

向作者/读者索取更多资源

In a broad sense, model reduction means producing a low-dimensional dynamical system that replicates either approximately, or more strictly, exactly and topologically, the output of a dynamical system. Model reduction has an important role in the study of dynamical systems and also with engineering problems. In many cases, there exists a good low-dimensional model for even very high-dimensional systems, even infinite dimensional systems in the case of a PDE with a low-dimensional attractor. The theory of global attractors approaches these issues analytically, and focuses on finding (depending on the question at hand), a slow-manifold, inertial manifold, or center manifold, on which a restricted dynamical system represents the interesting behavior of the dynamical system; the main issue depends on de. ning a stable invariant manifold in which the dynamical system is invariant. These approaches are analytical in nature, however, and are therefore not always appropriate for dynamical systems known only empirically through a dataset. Empirically, the collection of tools available are much more restricted, and are essentially linear in nature. Usually variants of Galerkin's method, project the dynamical system onto a function linear subspace spanned by modes of some chosen spanning set. Even the popular Karhunen-Loeve decomposition, or POD, method is exactly such a method. As such, it is forced to either make severe errors in the case that the invariant space is intrinsically a highly nonlinear manifold, or bypass low-dimensionality by retaining many modes in order to capture the manifold. In this work, we present a method of modeling a low-dimensional nonlinear manifold known only through the dataset. The manifold is modeled as a discrete graph structure. Intrinsic manifold coordinates will be found specifically through the ISOMAP algorithm recently developed in the Machine Learning community originally for purposes of image recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据