4.4 Article

Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance

期刊

JOURNAL OF BACTERIOLOGY
卷 189, 期 7, 页码 2759-2768

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.01490-06

关键词

-

向作者/读者索取更多资源

Escherichia coli has an ability, rare among the Enterobacteriaceae, to survive extreme acid stress under various host (e.g., human stomach) and nonhost (e.g., apple cider) conditions. Previous microarray studies have exposed a cluster of 12 genes at 79 centisomes collectively called an acid fitness island (AFI). Four AFI genes, gadA, gadX, gadW, and gadE, were already known to be involved in an acid resistance system that consumes an intracellular proton through the decarboxylation of glutamic acid. However, roles for the other eight AFI gene products were either unknown or subject to conflicting findings. Two new aspects of acid resistance are described that require participation of five of the remaining eight AFI genes. YhiF (a putative regulatory protein), lipoprotein Sip, and the periplasmic chaperone HdeA protected E. coli from organic acid metabolites produced during fermentation once the external pH was reduced to pH 2.5. HdeA appears to handle protein damage caused when protonated organic acids diffuse into the cell and dissociate, thereby decreasing internal pH. In contrast, YhiF- and Slp-dependent systems appear to counter the effects of the organic acids themselves, specifically succinate, lactate, and formate, but not acetate. A second phenomenon was defined by two other AFI genes, yhiD and hdeD, encoding putative membrane proteins. These proteins participate in an acid resistance mechanism exhibited only at high cell densities (> 10(8) CFU per ml). Density-dependent acid resistance does not require any demonstrable secreted factor and may involve cell contact-dependent activation. These findings further define the complex physiology of E. coli acid resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据