4.6 Article

Controlling quantum dynamics regardless of laser beam spatial profile and molecular orientation

期刊

PHYSICAL REVIEW A
卷 75, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.75.043409

关键词

-

向作者/读者索取更多资源

In a typical experiment aiming to control quantum dynamics phenomena, each molecule experiences the same temporal laser field, but with an amplitude that depends on the spatial location and orientation of the molecule in the laser beam. It is proved under commonly arising conditions that at least one optimal laser field exists which will control all molecules in the sample, regardless of their orientation or spatial location. The optimal laser field may consist of a multipolarization control containing up to three orthogonal, independently shaped components. The analysis also includes the prospect of multipartite control where the field couples distinct groupings of states (e.g., multiple vibronic states), but without direct coupling within a group of states. This conclusion shows that achieving quantum control is not a matter of striking a compromise over the sample diversity, but rather a task subject to optimization to reach the highest possible level of control for all molecules in the sample.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据